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Executive Summary 

Bayesian statistics offers a rigorous approach to integrate historical study or real-world data into survival, cost-

effectiveness, and related models that are commonly used in health technology assessments. In this article, 

we motivate the adoption of Bayesian methods to perform these analyses and explain how Bayesian methods 

can empower evidence generation for challenging datasets. Then, we discuss current factors hindering more 

widespread application of Bayesian methods to clinical study data and outline opportunities to employ Bayesian 

approaches and thereby overcome issues with conventional methods that frequently arise in regulatory and 

reimbursement submissions. 

Key takeaways

   Bayesian models can improve the accuracy, precision, and transparency of treatment efficacy estimates in 

challenging decision-making scenarios, such as at initial reimbursement when data are immature and in rare 

diseases or subgroup analyses where sample size is limited.

   The use of Bayesian methods in health technology assessments is likely to continue to increase in the future 

as payers place further emphasis on early access agreements and precision medicine.
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Bayesian methods can empower evidence generation and 
facilitate constructive engagement of stakeholders

Survival models fitted to time-to-event data from clinical studies, and cost-effectiveness models that extend 

survival models to multiple health states and incorporate disease-related costs, are common in health 

technology assessments (HTAs). Health authorities are increasingly encouraging or requiring that estimates 

obtained from these models are supported by relevant external information sources such as historical study or 

real-world data.1 This advancement is greatly facilitated by the recent growth in availability of such data and is 

becoming more important to the reimbursement process as payers continue to frequently accept less mature 

study data in HTAs.2 However, regulatory technical guidance on preferred approaches to incorporate external 

information into survival, cost-effectiveness, or related models is sparse, and manufacturers often only use 

external data for basic post-hoc model validation or else integrate prior information into model predictions in 

a simplistic manner. Crude approaches to incorporate external data into survival models may in fact worsen 

the accuracy of estimates owing to the introduction of artefacts and ignorance of confounding variables, and 

therefore may do little to improve payer confidence in predictions of treatment efficacy.

Hence, it is desirable to pursue rigorous approaches to directly and holistically integrate external data 

into survival and cost-effectiveness models when data are limited by follow-up duration or sample size. A 

natural solution to this problem is provided by Bayesian statistics,3,4 which describes a formal framework to 

synthesize current and external information sources via incorporation of a priori expectation, which is often 

expressed via a prior probability distribution. The prior distribution is specified by the modeler and describes 

the expected model behavior in the absence of the current study data, as well as the a priori uncertainty 

associated with the external knowledge.5 These prior data are then combined with the current study data to 

yield posterior probability distributions for model estimates (Figure 1). Prior distributions impose transparent 

clinical assumptions pertaining to the choice of external data and the model formulation, and therefore 

Bayesian models are explainable and may help to constructively engage stakeholders during regulatory 

and reimbursement processes. Despite their intuitive attractiveness, the adoption of Bayesian methods in 

healthcare research is currently hindered by issues of complexity in model design and implementation that 

require specialist knowledge. In the following, we discuss the potential for Bayesian models to improve the 

rigor of survival and cost-effectiveness analyses in HTAs, and outline opportunities for employing a Bayesian 

framework to yield robust and precise clinical insights from study data.
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Bayesian methods allow selected model features to be 
informed by relevant external data

The Bayesian framework is not based on the classical notion that the current study data are the sole 

information source, and therefore better reflects the decision-making scenario in most modern HTAs, where 

relevant historical trial or observational data in a similar setting are usually available. Instead, Bayesian 

approaches allow the holistic integration of external knowledge to supplement features of model predictions 

where observations are scarce, and thus allow proper quantification of uncertainty inclusive of existing relevant 

data sources, while avoiding overfitting to non-ideal external information.6,7 Moreover, Bayesian models 

that are constructed appropriately can tolerate moderate confounding between external and current data 

sources, which arises from inevitable differences in baseline characteristics of the patient population and in 

study design, as well as from evolution of the treatment landscape over time. That is, the external data play 

a limited role in a Bayesian model as a representation of the best available source of a priori information on 

specific model features and the associated prior uncertainty, including uncertainty reflecting a believed lack of 

commensurability between external and current data sources. In effect, a well-designed Bayesian model can 

adaptively borrow only from certain features of the external data that are not inconsistent with the current 

study data, for example, for covariate coefficients associated with selected baseline characteristics, or outside 

of the current study follow-up period.

Indeed, there are many common scenarios where there is a necessity to leverage non-ideal external data, so 

that the sophisticated synthesis of disparate information sources offered by Bayesian methods is especially 

advantageous. An important special case of this situation is when historical study data are only available for 

the standard of care. While Bayesian modelling strategies may focus on reducing uncertainty in the control 

arm in this scenario, there is also the possibility that the external control data can be leveraged to construct 

demonstrably conservative survival models for experimental arms, via implicit treatment waning assumptions. 

A recent case study analyzed reconstructed data from an interim analysis of a randomized phase III trial of 

the PD-1 immune checkpoint inhibitor pembrolizumab plus standard of care in first-line advanced cervical 

cancer, employing a Bayesian model informed by historical trial data with extended follow-up for the control 

treatment.8 The Bayesian model correctly forecasted the statistically significant positive treatment effect on 

survival that was later observed in the final analysis, whereas extrapolations from the uninformed model had 

high uncertainty (Figure 2). Although, predictions from the Bayesian model were conservative since the implicit 

treatment waning assumption did not capture the true extent of durable treatment benefit in the experimental 

arm. Nonetheless, carefully designed models such as these may provide more convincing evidence of treatment 

efficacy to payers during initial reimbursement submissions, since they avoid naïve speculation and are instead 

grounded in justifiable assumptions.

In general, prior distributions should be rationalized in terms of the implicit clinical assumptions they entail and 

their perceived level of conservativeness. When leveraging external data for a therapy in the same or related 
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class to inform estimates for an experimental treatment, modelers should consider what features of outcomes 

are anticipated to be shared between treatments, per their mechanism of action. For instance, for novel 

oncology therapies such as immunotherapies and targeted therapies, the potential for phenomena including 

delayed responses, durable or transient responses, and acquired resistance should be critically evaluated. 

Unknown confounding between current and external data sources can be accounted for by increasing the 

variances of prior distributions to effectively discount the external data, while known differences in the 

distribution of key baseline characteristics can be accommodated by matching-adjustment if necessary.9

Bayesian models facilitate more reliable and justifiable 
extrapolation of survival outcomes from immature data

Extrapolation of survival outcomes from data with limited follow-up, as in the aforementioned advanced 

cervical cancer case study (Figure 2),8 is a ubiquitous task in HTAs and is typically one of the key drivers of 

cost-effectiveness.10 Hence, formulation and selection of an appropriate survival model is often a critical 

consideration influencing payer recommendations, especially when study data are immature. Following the 

current conventional system to decide upon a survival model,11 which considers goodness-of-fit to the available 

trial data as a primary criterion for ranking candidate models and then typically performs naïve extrapolation, 

risks severely misrepresenting the value of novel therapies when trial data are immature, by failing to 

capture complex survival patterns borne by longer-term effects.10 Standard survival models are also liable to 

misrepresent the true decision uncertainty, owing to the simplistic assumptions surrounding the extrapolation 

and failure to acknowledge other relevant sources of information outside of the current study. Moreover, 

when statistical assumptions pertaining to the extrapolation are inadequately justified by external data, the 

survival or cost-effectiveness model is not readily defensible, and the plausibility of model estimates may not 

be verifiable. Payers may respond to the consequent high decision risk by expressing a preference for a more 

conservative model or requiring additional evidence to demonstrate that acceptability thresholds are met 

convincingly.

A recent application of Bayesian survival models to a phase III trial in metastatic non-small cell lung cancer 

demonstrated that leveraging historical trial data with extended follow-up for dual immunotherapy enabled 

the durable survival benefit associated with dual immunotherapy plus chemotherapy to be more accurately 

captured, compared to traditional models, when study data were immature.12 That is, the Bayesian model was 

not naïve to the durable responses in the experimental arm that were sustained beyond the available follow-

up period, which are characteristic of immunotherapies, whereas the conventional model underestimated 

the value of the combination regimen vs chemotherapy by failing to adequately capture this effect. Similarly, 

informed Bayesian models may accurately forecast deleterious effects that indicate a trial can be prematurely 

discontinued for reasons of patient safety and to avoid wasting resources.13 These qualities of Bayesian models 
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to perform informed trial-based survival extrapolations are also beneficial for indirect treatment comparisons, 

where leveraging long-term external information can mitigate bias arising from differences in follow-up 

duration across studies.14

Bayesian models can enhance predictive power to enable 
precision medicine

Subgroup analyses are usually exploratory by study design but are often critical to ensure payers can assess 

where novel therapies yield the most value and thus identify a policy for optimal allocation of resources. High 

uncertainty in subgroup-specific estimates often precludes quantitative understanding of treatment benefit 

among specialized patient populations and stakeholders may be unwilling to accept evidence of treatment 

effect within clinically important subgroups because of apparent statistical insignificance. In a Bayesian 

formulation, subgroup-specific historical study data can be leveraged to reduce uncertainty in estimates 

derived from the current study, and thus aid manufacturers in demonstrating efficacy when sample sizes are 

small. In a recent application, data from a phase I study of immunotherapy in a gynecologic cancer, stratified 1:1 

according to a key tumor biomarker, were leveraged to aid an exploratory analysis for the subgroup exhibiting 

the favorable but less common biomarker in the phase III trial data, which was underpowered since enrolment 

in the phase III study reflected natural prevalence of the biomarker (around 1:3 ratio).15 This strategy has wider 

applicability to yield detailed clinical insights on the efficacy of novel oncology therapies, as it is becoming 

increasingly common for earlier-phase non-randomized studies to perform selected enrollment of patients 

exhibiting a clinical biomarker that is amenable to the treatment mechanism of action, while randomized phase 

III studies follow an all-comers design.16

In general, it may be difficult to source subgroup-specific external data owing to limited capture of information 

on key baseline biomarkers, especially in real-world data sources. In this situation, it has been suggested 

that subgroup analyses can be aided by “borrowing” information from the complementary subgroup within 

a Bayesian framework.17 Bayesian methods are now routinely adopted for augmentation of control arm 

populations in rare disease studies,18 where sample size challenges likewise preclude precise quantitative 

inference on treatment effects, and therefore their potential application to enhance predictive power in 

subgroup analyses is already clear. As payers place increased emphasis on optimizing outcomes for more 

granular patient populations,19 a task to which traditional statistical methods employed in HTAs are not well 

suited, the appeal of alternative Bayesian approaches to perform subgroup analyses and thereby facilitate 

precision medicine will continue to grow.
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Outstanding challenges remain for the adoption of Bayesian 
methods in HTAs

Despite the advantages of adopting a Bayesian framework to survival and cost-effectiveness analyses, there 

is a requirement for specialist expertise that is arguably a main hindrance to more widespread use of these 

methods. While the potential to sophisticatedly integrate external data into models is powerful and appealing, 

the resulting complexity creates additional responsibility for modelers to carefully design and justify the 

precise model formulation.20 Specifically, modelers must consider factors such as the choices of external data, 

the mechanism for its inclusion, and validation of model estimates through conducting scenario analyses. A 

qualified modeler will be fluent in the underlying mathematics of Bayesian statistics21 and practical aspects of 

model estimation by Monte Carlo methods,20 familiar with a probabilistic programming language such as Stan,22 

and experienced in applying Bayesian models to clinical data.

While some influential health authorities have provided arguments in favor of Bayesian methods,23 there is 

currently a lack of specific technical guidance from regulators or payers on precise aspects of Bayesian model 

design and validation. The FDA recognizes the usefulness of Bayesian methods for improving the precision of 

treatment effect estimates, especially in subgroups and rare diseases, but the current FDA guidance is primarily 

focused on the perspective of clinical trial design rather than evidence generation.24 The FDA emphasizes 

early engagement to align on implicit model assumptions related to the choice of priors.25 Guidance from the 

National Institute for Health and Care Excellence (NICE) advocates for Bayesian methods as an approach to 

incorporate pre-defined understanding of specific risks on survival and mentions several particular classes 

of Bayesian model that can be considered for informed survival extrapolations, but does not offer detailed 

technical advice on preferred modeling practices.26 Currently, detailed guidance on best practices for informed 

Bayesian survival and cost-effectiveness analysis is primarily contained in the academic literature.6, 27-29 In 

the future, the prevalence of Bayesian models in HTAs will likely increase owing to the improved availability 

of specialist software30 and a greater number of case studies demonstrating the practical benefits of, and 

providing direction on best practices for, Bayesian methods across a diverse array of decision-making scenarios 

and therapeutic areas.

Following best practices provides many opportunities for 
Bayesian methods to improve evidence generation

For successful implementation of Bayesian methods to generate evidence for payers, regulators, and clinicians, 

manufacturers should survey and collect relevant external sources of patient-level data – observational data, 

data from earlier-phase trials, and data from previous randomized studies of related patient populations and 

therapies - that provide high-quality a priori information to supplement observations from an ongoing study. In 

typical applications, there is little advantage to incorporating many distinct sources of external data, and instead 
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it is usually most appropriate to select the single most appropriate external dataset to derive prior expectation, 

and if appropriate, explore other external data sources in scenario analyses. Higher-level information such as 

population-level quantities or clinical expert opinion may also be gathered to serve as prior knowledge.

These data can then be used to inform a Bayesian model that is designed appropriately to gain predictive 

power from the external data, considering the aspects of the current study that would benefit most from being 

supplemented, while recognizing the limitations of the prior information sources. For example, if sample size 

is satisfactory but data are immature, a survival model can be formulated with sufficient flexibility that longer-

term external data essentially only affect estimates beyond the follow-up period.3 If a study was underpowered 

to assess some subgroups but not others, then informed prior distributions may be employed only for selected 

covariate coefficients. During the model design process, input from clinical experts and other stakeholders 

should be sought to validate the assumptions that are implicitly invoked by the model design, and it should be 

ensured that the influence of the external data sources and model specification is understood by performing 

scenario analyses surrounding the specification of the prior distributions. A summary of the relative advantages 

of informed Bayesian vs conventional models for some common tasks in HTAs is given in Table 1.

When these best practices are followed, Bayesian techniques have the potential to expedite patient access to 

novel therapies by enabling robust and transparent demonstration of the efficacy and value of novel therapies 

in data-deficient regimes where standard approaches are inadequate. Appropriate usage of Bayesian survival 

and cost-effectiveness models informed by historical study, real-world, or other external data has great 

potential to lead to more favorable healthcare decision-making for payers, manufacturers, and patients.
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Figure 1: Schematic illustration of prior and posterior probability distributions for a model estimand. The vertical line shows the posterior 

mean, which is the Bayesian point estimate, and the shaded area shows the 95% credible intervals, which are the Bayesian analogue of 95% 

confidence intervals.

 

Figure 2: Application of a Bayesian dynamic borrowing model,7 informed by historical control data, to reconstructed data from an interim 

analysis of the KEYNOTE-826 study in advanced cervical cancer, with 15 months minimum follow-up. Model predictions are compared to 

observations from the final analysis, with 30 months minimum follow-up. The Bayesian model yielded deliberately conservative estimates 

for the longer-term treatment effect, but achieved statistical significance where the uninformed (vague) model did not.8
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Task Bayesian models Traditional models

Trial-based survival 
extrapolations

   May improve reliability of long-term 
predictions by invoking transparent 
assumptions based on prior data, 
avoiding naïve projections 

   Estimates the true decision 
uncertainty inclusive of existing 
available knowledge outside of the 
current study

   Tailored to address limitations of 
individual studies and to investigate 
clinical hypotheses in particular 
patient populations

   May be sufficient (e.g., when data 
are mature, disease trajectories are 
not complex, longer-term survival is 
not a main driver of clinical- or cost-
effectiveness, etc.)

   Well-defined model selection 
algorithm outlined by regulators 
enforces consistency across 
submissions11

Subgroup analyses    Can reduce uncertainty in estimates 
when sample sizes are small

   Not predicated on a predefined 
significance level, consistent 
with exploratory nature of most 
subgroup analyses

   May be built into study design

   Not contingent on availability of 
relevant external data, which may be 
difficult to source for specific patient 
subpopulations

Indirect treatment 
comparisons

   Can reliably fit more complex 
models (e.g., large networks of 
studies, flexible survival models, 
extrapolated outcomes)

   Can reduce uncertainty in indirect 
treatment effect estimates when the 
network of studies is small 

   Can attenuate bias in comparative 
effect estimates arising from 
differences in follow-up duration 
between studies

   May be sufficient (e.g., moderate 
network sizes, based on simplistic 
quantities such as hazard ratios, etc.)

   No requirement to assess model 
sensitivity to (vague) priors that are 
necessary in Bayesian models

Table 1: Summary of relative advantages of informed Bayesian vs traditional methods for some common tasks in health technology 

assessments and clinical evidence generation.
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